If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.86t^2-15t+25=0
a = 1.86; b = -15; c = +25;
Δ = b2-4ac
Δ = -152-4·1.86·25
Δ = 39
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{39}}{2*1.86}=\frac{15-\sqrt{39}}{3.72} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{39}}{2*1.86}=\frac{15+\sqrt{39}}{3.72} $
| 16d+23=14d−28 | | -38=-7(t+35)+-87 | | P^2+8p+23=8 | | -9(3-y)=9 | | 4x+28=10x-16 | | x+5=4x+9-x | | 5(3X+7)+2x=7x-5(-2x+9) | | 5z+38=58 | | 1/2h+3/1(h-6)=5/6=2 | | 5u+9=104 | | (x-5)(2x-7)+49=0 | | 1.5x^2-1=0 | | P(x)=x2+4x+9 | | 2j2+7j+6=0 | | -20=2(y+2)+2y | | P(x)=2x+4x+9 | | 4(y-862)-221=-197 | | 6x=2x/7-1 | | 5y+6=3y+10 | | -20=4(u-3)-2u | | 11y-19+7y+1=180 | | 5z+96=180 | | 2(x-5)=9-3x+6+8+3x+17 | | 3n^2+16n+12=0 | | -x-15=0x-4-15 | | x+6/25=1 | | 2.5x(x-10)+(x-40)+x=360 | | -10-a=-18 | | 13-4x=2(x+5)-8x | | X1/3=x-3 | | 0+3y=-5 | | -7(x+4)-13=20+2 |